Living with type 1 diabetes today is typically manageable thanks to advancements in medical technology. However, some patients still confront severe complications, from extreme hypoglycemia that can lead to diabetic coma to long-term effects, such as blindness, nerve damage, and kidney failure. In some cases, type 1 diabetes can be life-threatening, and in all cases, it is currently incurable.
But there is hope, fostered by a collaboration between Caltech and its neighbor in Duarte, City of Hope. Established in 2008 with a $6 million gift from an anonymous donor, the Caltech-City of Hope Biomedical Research Initiative provides seed grants to accelerate the development of basic scientific research and its translation into applications ranging from new pharmaceuticals to medical devices to treatment methods. The partnership was formalized—and further strengthened—in 2014, when the two institutions signed a memorandum of understanding, encouraging researchers to collaborate and share resources.
Leadership from Caltech and City of Hope and members of the public celebrated the partnership at a special event on May 13. More than 70 attendees gathered in Caltech's Beckman Institute Auditorium to learn about progress in fighting diabetes.
"The benefits of the deepening relationship between our two institutions emerged clearly in the evening's events," says Caltech President Thomas F. Rosenbaum, holder of the Sonja and William Davidow Presidential Chair and professor of physics. "Our increasing set of research interactions is making great strides in translating fundamental science to advance human health."
To date, the initiative has funded 28 endeavors led by teams of Caltech and City of Hope investigators—early-stage research projects that might not have moved forward if they had had to rely on traditional funding sources.
"The more we work together, the more we enable discovery," says City of Hope president and CEO Robert Stone. "Saving lives today and tomorrow—that's what this collaboration is about."
One encouraging development for people facing uncontrolled type 1 diabetes comes in the form of a simple surgery. The procedure takes healthy, functioning pancreatic islets—clusters of cells that contain insulin-producing beta cells—from an organ donor and transplants them into a patient's liver. Doctors at City of Hope have already performed the surgery on a limited number of patients and have seen promising results.
While islet transplantation eventually may lead to a cure for diabetes, challenges remain in making it practical. Once islets have been donated, for example, how can they be isolated and kept functional? How do researchers distinguish good islets from bad without wasting the good ones during testing?
Through the Caltech-City of Hope Biomedical Research Initiative, researchers and clinicians are working hand-in-hand to answer these important questions.
At the event, researchers told the story and explained the science behind their project. Fouad Kandeel, chair and professor in the Department of Clinical Diabetes, Endocrinology, and Metabolism at City of Hope, and his colleague, Kevin Ferreri, associate research professor in the Division of Developmental and Translational Diabetes and Endocrine Research, have been working on islet cell transplantation as a treatment for their patients with type 1 diabetes. Yet existing methods of selecting islets took too much time, involved too much labor, and used up too many islets.
That is where the Caltech partners came in. Yu-Chong Tai, the Anna L. Rosen Professor of Electrical Engineering and Mechanical Engineering, and Hyuck Choo, assistant professor of electrical engineering and medical engineering, invented a novel device that can screen individual islets. The microfluidic platform accurately determines the health of an islet sample by applying glucose and measuring the sample's reaction. In less than a year, the team has designed a proof-of-concept platform.
Once the device is perfected, Choo believes the team will be able to easily scale it up and even use its technology to help overcome other clinical challenges.
"This is the perfect opportunity for medical engineering at Caltech," says Choo. "We want to create technology-based solutions to large-scale societal health issues, like diabetes."