Scientists Find "Good Intentions" in the Brain
PASADENA—Neurobiologists at the California Institute of Technology have succeeded in peeking into one of the many "black boxes" of the primate brain. A study appearing in the March 13 issue of the journal Nature describes an area of the brain where plans for actions are formed.
It has long been known that we gain information through our senses and then respond to our world with actions via body movements. Our brains are organized accordingly, with some sections processing incoming sensory signals such as sights and sounds, and other sections regulating motor outputs such as walking, talking, looking, and reaching. What has puzzled scientists, however, is where in the brain thought is put into action. Presumably there must be an area between the sensory incoming areas and the motor outputting areas that decides or determines what we will do next.
Richard Andersen, James G. Boswell Professor of Neuroscience at Caltech, along with Senior Research Fellow Larry Snyder and graduate student Aaron Batista, chose the posterior parietal cortex as the likely candidate to perform such decisions. This is a high-functioning cognitive area and is the endpoint of what scientists call the visual "where" pathway. Lesions to the parietal cortex of humans result in loss of the ability to appreciate spatial relationships and to navigate accurately.
As Michael Shadlen of the University of Washington says in theNature "News and Views" commentary on the latest findings, "Nowhere in the brain is the connection between body and mind so conspicuous as in the parietal lobes—damage to the parietal cortex disrupts awareness of one's body and the space that it inhabits."
It is here, Andersen postulates, that incoming sensory signals overlap with outgoing movement commands, and it is here where decisions and planning occur. Numerous investigations had assumed a sensory map of external space must exist within the parietal cortex, so that certain subsections would be responsible for certain spatial locations of objects such as "up and to the left" or "down and to the right." Previous results from Andersen's own lab however had led him to question whether absolute space was the driving feature of the posterior parietal map or whether, instead, the intended movement plan was the determining factor in organizing the area.
In a series of experiments designed so that the scientists could "listen in" on the brain cells of monkeys at work, the animals were taught to watch a signal light and, depending on its color, to either reach to or look at the target. When the signal was green they were to reach and when it was red they were only to look at the target. An important additional twist to the study was that the monkeys had to withhold their responses for over a second.
The scientists measured neural activity during this delay when the monkeys had planned the movement but not yet made it. What they found was that different cells within different regions of the posterior parietal cortex became active, depending not so much on where the objects were but rather on which movements were required to obtain them. It seems then that the same visual input activates different subareas depending on how the animal plans to respond.
According to Andersen, this result shows that the pathway through the visual cortex that tells us where things are, ends in a map of intention rather than a map of sensory space as had been previously thought. According to Shadlen these results are intriguing because they indicate that "for the brain, spatial location is not a mathematical abstraction or property of a (sensory) map, but involves the issue of how the body navigates its hand or gaze." Andersen feels the study is important because it demonstrates that "our thoughts are more directly tied to our actions than we had previously imagined, and the posterior parietal cortex appears to be organized more around our intentions than our sensations."